
www.manaraa.com

UNLV Theses, Dissertations, Professional Papers, and Capstones 

May 2018 

Machine Learning Applications in Graduation Prediction at the Machine Learning Applications in Graduation Prediction at the 

University of Nevada, Las Vegas University of Nevada, Las Vegas 

Elliott Collin Ploutz 
philosopher.scholar@gmail.com 

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations 

 Part of the Computer Sciences Commons 

Repository Citation Repository Citation 
Ploutz, Elliott Collin, "Machine Learning Applications in Graduation Prediction at the University of Nevada, 
Las Vegas" (2018). UNLV Theses, Dissertations, Professional Papers, and Capstones. 3309. 
https://digitalscholarship.unlv.edu/thesesdissertations/3309 

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV 
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the 
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from 
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself. 
 
This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by 
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact 
digitalscholarship@unlv.edu. 

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3309&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3309&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/3309?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3309&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu


www.manaraa.com

MACHINE LEARNING APPLICATIONS IN GRADUATION PREDICTION

AT THE UNIVERSITY OF NEVADA, LAS VEGAS

by

Elliott Collin Ploutz

Bachelor of Arts – Philosophy

University of Nevada, Las Vegas

2012

Bachelor of Science – Computer Science

University of Nevada, Las Vegas

2016

A thesis submitted in partial fulfillment of
the requirements for the

Master of Science in Computer Science

Department of Computer Science
Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas
May 2018



www.manaraa.com

c© Elliott Collin Ploutz, 2018

All Rights Reserved



www.manaraa.com

 

ii 
 

  

  

 

Thesis Approval 

The Graduate College 

The University of Nevada, Las Vegas 

        

April 10, 2018 

This thesis prepared by  

Elliott Collin Ploutz 

entitled  

Machine Learning Applications in Graduation Prediction at the University of Nevada, 

Las Vegas 

is approved in partial fulfillment of the requirements for the degree of 

Master of Science in Computer Science 

Department of Computer Science 

                
Fatma Nasoz, Ph.D.    Kathryn Hausbeck Korgan, Ph.D. 
Examination Committee Chair     Graduate College Interim Dean 

 

Justin Zhan, Ph.D. 
Examination Committee Member 

        

Evangelo Yfantis, Ph.D. 
Examination Committee Member 

 

Matthew Bernacki, Ph.D. 
Graduate College Faculty Representative 

 



www.manaraa.com

Abstract

Graduation rates of four-year institutions are an increasingly important metric to incoming students

and for ranking universities. To increase completion rates, universities must analyze available

student data to understand trends and factors leading to graduation. Using predictive modeling,

incoming students can be assessed as to their likelihood of completing a degree. If students are

predicted to be most likely to drop out, interventions can be enacted to increase retention and

completion rates.

At the University of Nevada, Las Vegas (UNLV), four-year graduation rates are 15% and six-year

graduation rates are 39%. To improve these rates, we have gathered seven years worth of data on

UNLV students who began in the fall 2010 semester or later up to the summer of 2017 which includes

information from admissions applications, financial aid, and first year academic performance. The

student group which is reported federally are first-time, full-time freshmen beginning in the summer

or fall. Our data set includes all freshmen and transfer students within the time frame who meet

our criteria. We applied data analysis and visualization techniques to understand and interpret

this data set of 16,074 student profiles for actionable results by higher education staff and faculty.

Predictive modeling such as logistic regression, decision trees, support vector machines, and neural

networks are applied to predict whether a student will graduate. In this analysis, decision trees

give the best performance.
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Chapter 1

Introduction

One of the essential goals of universities is to aid student success. What student success means can

change depending on the context. Student success could mean a high grade point average (GPA),

self-assessed confidence in abilities, success in a specific course, graduation within a time-frame, or

more specific milestones. With the available student data universities have at their disposal, the

next logical step is to apply analytical techniques and statistical models to interpret the factors

leading to, and the prediction of, student success.

A more objective definition for student success is degree completion, graduation. At the under-

graduate level, bachelor degree graduation rates for American universities are particularly consid-

ered with six-year completion rates being reported to the U.S. Department of Education’s National

Center for Education Statistics (NCES). The NCES maintains the Integrated Postsecondary Ed-

ucation Data System (IPEDS) which compiles surveys from all institutions that receive federal

aid. The working definition for this thesis derives from the IPEDS definition of completion within

150% of the expected time for graduation, i.e., within six years for four-year institutions [IPE17].

With analysis, universities can intervene on students who are likely to dropout and provide a fertile

environment for those factors found to be conducive to graduation.

The ideal model would accurately classify incoming freshmen and transfer students with the

likelihood of their success. At this stage, administrators can have the most potent effects in in-

tervention and assistance. However, there are limitations on the data universities have access to.

Gaevi et al. [GDRG16] identified three main types of data used in predictive models of academic

success and retention, stored data, trace data, and a combination of the two.

Stored data is all information provided to the school by the student, e.g., high school GPA,

American College Testing (ACT)/Scholastic Aptitude Test (SAT) scores, biological sex, etc. Trace

1



www.manaraa.com

data or log data is data logged by Learning Management Systems (LMS). Online tools like class

websites keep track of links clicked, time spent logged in, quizzes, forum posting, and other domain

specific information. This data is later analyzed with educational data mining techniques for

patterns and higher level information. Finally, combinations of the two types of data are used for

a more complete picture. LMS data is typically used to predict success within a specific course

rather than long term prediction of success within a major or graduation.

This problem is one area of the learning analytics and educational data mining fields. Learning

analytics supports and optimizes the learning environment with methods applied to educational

data sets [CLT+14]. The closely related field of educational data mining applies data mining,

statistics, pattern recognition, and machine learning to automatically extract useful information

from data generated by learners and learning environments. These research fields are robust and

growing while only being recognized as an interdisciplinary field in the last few years. Papamitsiou

& Economides [PE14] performed a systematic review of learning analytics research from 2008-2013

and found 209 mature articles, however only 40 met their inclusion criteria for key studies. One

leader in the field, George Siemens, argues learning analytics has developed enough to be regarded

as an emerging research field [Sie13]. While learning analytics is an important yet fledgling field,

the use of trace data is beyond the scope of this thesis and left for future work.

1.1 Problem Description and Motivation

Given a set of student attributes, X, in the form of stored data such as application data, first year

academic performance, and financial aid data, predict whether the student will graduate from the

university (outcome = 1) or not (outcome = 0).

The specific student group that is tracked and reported nationally are full-time, first-time

freshmen seeking a bachelor’s degree who begin in the fall. These student groups are called cohorts.

Students who begin in the summer are generally subsumed under the fall cohorts, however students

starting in the spring go untracked. Transfer students are generally untracked at the national

level. According to the NCES, six-year graduations rates for full-time, first-time freshmen seeking

a bachelor’s degree beginning in the fall of 2009 are at 59% nation wide for public institutions

[IPE17]. As shown in the table below, the University of Nevada, Las Vegas’ (UNLV’s) graduation

rates for first-time, full-time freshmen are well below the national average at about 39%.
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Figure 1.1: Graduation rates as reported by [UNL14]

Figure 1.2: Graduation rates visualized by [UNL14]

Graduation rates are not only important to potential students, but also play a role in university

rankings and funding opportunities. While full-time, first-year freshmen cohorts could be focused

on to the exclusion of other groups, UNLV is committed to serving all of its student population.

To that end, freshmen who began in the spring and transfer students at the undergraduate level

are included in this analysis.

What makes this thesis particularly interesting is UNLV’s ranking as the number one most

ethnically diverse campus in the nation according to the 2017 listing by the U.S. News & World

Report [div17]. Projections based on 2014 census data show a growing trend toward diversity such

that “...by 2044, more than half of all Americans are projected to belong to a minority group (any

group other than non-Hispanic White alone); and by 2060, nearly one in five of the nation’s total

population is projected to be foreign born,” [CO15]. Forward looking institutions can refer to this

work in expectation of changing student demographics.
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Chapter 2

Literature Review

2.1 Literature Review

Many universities and institutional researchers have applied a wealth of techniques to student

success. There are two main aspects, interpretation and prediction. Interpretation allows humans

to understand the important factors leading to graduation, for example access to tutoring centers at

key courses could lead to higher graduation rates. Prediction uses statistical models to estimate the

number, rate, or range of students who will graduate within a specified amount of time. Typically,

the more complex a model is the greater the degree of accuracy it can have. However, the more

complexity a model has the less interpretable it is for humans.

2.1.1 Critique of Generalized Models Across Universities

The idea of a generalized model, one that can be applied to different universities, departments,

and levels, is highly appealing. Much work has focused on this generalization [JML+14] [OO16].

However, Gaevi et al. [GDRG16] have rebutted the idea of this ”one size fits all” model.

Gaevi argues generalized models and models which rely heavily on trace data are largely athe-

oretic with regards to learning theories, so the interpretability of results and interventions to be

taken cannot draw from the long history of learning theory research. Variability in the predictive

results of the learning analytics field could suggest contextual differences within each discipline

resist a generalized model. Conijn et al. [CSKM17] analyzed 17 blended courses with N = 4,989

students at single institution using a Moodle LMS. Even though all the courses were from a single

institution, they found high variance in prediction accuracy, suggesting the portability of models

across courses is low.
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2.1.2 Interpretation

Decision Trees

Broadly speaking, decision trees are tree-like, directed graphs. Beginning from the root, the tree

splits up instances of the input where each level of the tree from the root specifies a narrower swath

of the data. Decision trees can be used for classification or regression. At each branching node, a

subset of the data is defined by a rule. This rule is of the form if and else− if where the previous

parent node rule is joined to the child rule by an and statement. At the bottom-most leaf node,

the joined rule classifies a given instance or returns a predicted value.

In a comparison of decision trees, artificial neural networks, and multiple logistic regression by

Serge Herzog [Her06], graduation prediction was based on four classes, less than three years, four

years, five years, and six or more years, which Herzog claims ”generates a more balanced outcome

in the dependent variable and ensures convergence in the regression model.” The decision trees

were based on three-rule induction for the C&RT, CHAID-based, and C5.0 models. For graduation

prediction, 15,457 undergraduate student profiles from 1995 to summer 2005 were used with 79

attributes. Variables used are listed in the appendix of the work. Missing values were imputed by

a general linear model (earned-to-attempted credits) or by multiple regression (total campus-based

credits). Mean value substitution was used for ACT scores.

Models were trained with and without transfer student data which lead to interesting changes in

accuracy, a significant improvement in all models. Regarding the prediction of six or more years for

graduation, the C5.0 tree performed the best of all tested models giving an accuracy of 93% which

is 11 percentage points higher than the baseline logistic regression model. All models performed

well in predicting the smaller portion of students who would graduate within three years.

Decision Sets

Lakkaraju et al. [LBL16] developed decision sets to bridge the gap between interpetability and high

accuracy. Like decision trees and lists, decision sets provide a set of human readable rules to classify

a given instance. Unlike trees and lists, the rules overlap between classes as little as possible and

are non-hierarchical. Each rule within a set is independent of the other rules. Using association

rule mining measures, the rules are assessed for accuracy with recall and precision. Interpretability

is measured by conciseness, overlap, and coverage. The authors also proved solutions will be near

optimal, within a range of at least 2/5ths of the global, optimal solution.
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The researchers applied their technique to the prediction of high school student graduation.

With data gathered from grades 6-8 on nearly 21,000 students set to graduate high school in 2012

and 2013, the decision set technique showed accuracy levels comparable to other state of the art

methods such as Bayesian decision lists and classification based on associations. Results were also

compared to standard models such as logistic regression, random forests, gradient boosting, and

decision trees. At this time, there appears to be no published work using decision sets for collegiate,

graduation prediction.

2.1.3 Prediction

Machine learning techniques discussed here can be divided into two types, supervised and unsuper-

vised. Supervised models are trained on labeled data. For our problem, this would mean labeling

student profiles as successful (degree completed within a specified time-frame) or unsuccessful. Un-

supervised models are label agnostic. Instead they try to autonomously learn new representations

of the data that reveal hidden patterns.

Logistic Regression

Logistic regression is the most common technique [GDRG16] [BS12] [LBD+12] [Pal13] due to how

easily academic success corresponds to classifications like letter grades and graduation (on-track,

at-risk, failing). It serves as a useful baseline to compare more advanced models.

Zhang et al. [ZAOT04] successfully applied multiple-logistic regression models to nine institu-

tions. The large scale project analyzed student data from 1987 to 2002 from engineering disciplines

with over 87,167 student records to evaluate pre-existing factors that most contribute to graduation.

High school GPA and quantitative SAT scores were impactful for all models and all institutions.

Gender, ethnicity, verbal SAT scores, and citizenship had a significant impact on graduation, but

the impact for each attribute varied among institutions for the engineering students.

Regression analysis by Engle & O’Brien [EO07] across 20 institutions showed differing student

factors and academic support change the most important attributes for models predicting gradua-

tion. A model trained on one institutional data set could have greatly reduced accuracy at another

four-year institution.
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Support Vector Machines

Support vector machines (SVMs) are supervised learning models with the goal of classification or

regression. For classification, the SVM takes in data points and attempts to best separate them

to their proper class in the attribute space, an N-dimensional space where N is the number of

attributes. To do this, a hyperplane based on the data points is constructed, if it exists, such that

the margin, the distance between a data point of any class, is maximized. Typically a maximized

margin corresponds to a lower error in generalization [CM04].

Barker et al. [BTR04] used SVMs in graduation prediction for four-year universities. With 59

attributes forming a student profile, their results show a best-case prediction rate of 66.1% on the

training set and 63.4% on the test set.

Artificial Neural Networks

Artificial neural networks are biologically inspired cognitive models. They consist of connected

neurons, nodes, which form an input layer, hidden layer, and output layer. The input layer would

in our case take in a student profile, each attribute corresponding to an input node. From that

node, the information is sent to the next layer multiplied by a weight specific to the receiving node.

The receiving node then processes the input from the previous nodes with an activation function.

If the input surpasses a certain threshold, the neuron fires and passes weighted information to the

next layer. The process is continued for the output layer, where the output of those nodes is the

computation of the network to be interpreted as the result.

Another way of representing artificial neural networks would be with a directed, weighted graph.

The learning aspect comes from fine tuning the weights to approximate the proper function for the

given problem. It has long been shown that feedforward neural networks are a class of universal

approximators [HSW89], meaning they can approximate any continuous function. This is a general

and useful approach for classification tasks, particularly tasks that require a non-linear function.

Karamouzis & Vrettos [KV08] developed a three-layered perceptron, training it with backprop-

agation and tanh activation functions. The output of the model is two nodes, one for successful

predicted graduation and one for failure. Their study was based around a two-year college. The

data consisted of twelve attributes for 1,407 community college student profiles. The training set

consisted of 1,100 profiles while the test set was 307. Their working definition of successful grad-

uation from a two-year program is completion within three years. Their accuracy rates were 72%
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for the training set and 68% for the test set, validating their model within 6,000 epochs.

An earlier attempt by Barker et al. [BTR04] dealt with four-year universities. Along with

SVMs, their neural networks had a best-case prediction of 67.5% on the training set and 63.4% on

the test set with 59 student attributes.

In Herzog’s [Her06] comparison of decision trees and artificial neural networks, three types of

backpropagation neural network topologies were used, simple topology, multitopology, and three-

hidden-layer pruned. When new and transfer students were grouped together, the three-hidden-

layers pruned model had 50% improvement in accuracy over the baseline regression model. Inter-

estingly, sensitivity analysis on neural networks revealed influential attributes for the model where

a similar sensitivity analysis on logistic regression showed little difference between variables.

Oladokun et al. [OACO08] developed a model for predicting student performance at the univer-

sity level for an engineering course using just ten attributes for a student profile. They provide an

example of transforming the input data into a format acceptable for neural networks. The output

class were of three types, good, average, and poor performance. The researchers used a multilayer

perceptron with two hidden layers and five nodes per layer. Out of a total of 112 student records, 62

were used for training, 34 as the testing set, and 16 cross validation resulting in an overall accuracy

of 74% where mean squared error is used to assess performance.

Hybrid Approach

Hybrid approaches use two or more models and aggregate the information into a whole. Oztekin et

al. [OO16] used a hybrid approach involving decision trees, support vector machines, and artificial

neural networks. They were also able to determine which features or attributes were important

predictors based on sensitivity analysis, giving a level of interpretability.

Their hybrid approach consisted of training and testing the three analysis techniques using ten-

fold cross-validation. The model is then assessed. If it performs satisfactorily, the model is used in

the next stage of information fusion-based sensitivity analyses, otherwise the model is discarded.

The performance was measured by tenfold cross-validation, confusion matrices (accuracy, sensitiv-

ity, and specificity), and information fusion-based sensitivity analyses. Their derived equation for

fused sensitivity analysis is defined as

ŷfused =
∑m

i=1 ωifi = ω1f1 + ω2f2 + ... + ωmfm

Where ωi refers to the weight of the individual model and fi is the model. The higher the per-
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formance of a model, the greater the weight. The weights are assumed to be normalized, so∑m
i=1 ωi = 1. Finally, the ranking of the given attributes can be determined using the normalized

sensitivity measure as

Sn(fused) =
∑m

i=1 ωiSin = ω1S1n + ω2S2n + ... + ωmSmn

Where Sin refers to the ith model and the nth attribute. The three models appear to be standard

with no particular variants specific to the data.

It is important to note the student data that was used in the experiment. The researchers ob-

tained the confidential and private data through official acquisition from a United States university.

Any records missing data, e.g., no SAT scores, were dropped. The final data set used contained 30

input attributes and 1,204 records total.

Interestingly, using ten-fold cross-validation the SVM model performed the best, followed by

the decision tree and artificial neural network. Logistic regression was not used due to its poor

results, achieving an accuracy of only 50.18%. Accuracy ranged from 71.56% to 77.71%. Through

sensitivity analysis, the most critical factors in predicting graduation rates were fall-term GPA,

the high school the student attended, and living on-campus or off-campus. Students were more

likely to graduate within six years if they lived on campus. The least critical factors were ethnicity,

work-study, and if a student applied for financial aid.

2.2 Discussion

Given the high degree of diversity at UNLV, it is possible that models of community colleges may

be more applicable to student success than university models. Community colleges tend to have

higher diversity which leads to different factors influencing success [HC17]. Further research is

needed on highly diverse, university institutions.

Care should be taken in the selection of training, test, and validation data sets. At many

institutions, the student body is not neatly balanced, i.e., there tends to be more students academ-

ically successful or at risk. This can skew the predictive power of the model [LBD+12]. Roughly

equal amounts of students from the output classes of the model should be used to better assess

the generality of the model. This is known as the class imabalance problem and is further detailed

in Thai-Nghe et al. [TNBST09]. Typical ways of dealing with this issue are over-sampling and

under-sampling to modify class distributions. The authors argue for three advanced methods: us-

ing Synthetic Minority Over-sampling Technique (SMOTE), cost-sensitive learning (CSL), and a
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combination of the two.

With the current aim of predicting graduation rates as a whole at UNLV, adding trace data

would be unnecessarily cumbersome. After building a campus wide model, we can begin to compare

this general model to discipline specific models. From there, we may be able to find the critical

courses that predict success and graduation within the discipline. At that time, we can determine if

trace data would be useful for evaluating course specific success, and a grounding in learning theory

like [GDRG16] and [CSKM17] could prove useful to further extract variables and have meaningful

results.

Towards the goal of early prediction for incoming students prior to their start at the university,

we can look at past performance as whole in terms of cumulative GPA and credits taken, ignoring

trace data at the outset. It is assumed that students will have no incoming trace data because they

have not yet taken classes, so it is safely ignored.

In the cases where students have taken college level courses, we would likely not have access to

the trace data. However, transfer students pose unique problems of their own. Some courses are

not transferable or international students have an entirely different grading scale. One method as

in [Her06] is to evaluate models with and without transfer students.

A pressing issue in the field is a standardization of a benchmark data set that researchers

can use to compare models. This data set would need to be both anonymous, robust, and class

balanced. As such, it would be more artificial than realistic. However, the current approach is that

most researchers work only on their own data with some logistic regression model as their base or

benchmark to compare to. This makes comparative experiments between researchers very difficult.

However, as discussed [EO07], portability of models is unlikely to be accurate with different student

demographics. One solution may be to have multiple benchmark data sets for different types of

institutions. Of course, there are also hard to define differences between institutions like academic

support and courses taught by adjunct faculty.

A separate motivation for not using public, benchmark data sets would be that they are far

abstract from the institutional data which the researchers likely serve as current models and data

vary wildly from one institution to the next. Attributes for modeling on stored data range from 10

to 80 with data samples ranging from 150 to 80,000.

10



www.manaraa.com

Chapter 3

Data Description

Gathering the data proved to be one of the most difficult aspects of this thesis. UNLV has thousands

of data tables stored in relational databases. Each table can have between two and a few hundred

attributes. Simply pulling all known data on a student would quickly become impractical, so some

level of selection is needed which causes a degree of bias in the analysis. Based on the reviewed

literature and my interactions with domain experts, we gathered student data from their submitted

admission applications, financial aid data, and their first year academic performance.

3.1 Data Gathering Process

The two main methods for extracting data are from UNLV Analytics and MyUNLV. UNLV Ana-

lytics is a licensed Oracle Business Intelligence product built specifically for UNLV student data.

MyUNLV is an Oracle PeopleSoft licensed product with an interface to the databases. Care was

taken to only collect data according to official census reporting dates to ensure accuracy. These

systems were put in place for the fall 2010 semester and later, so previous records are excluded

from this analysis due to their unreliability.

The criteria for a selected student is that they begin their work in the fall of 2010 or later and

graduated during or before the summer 2017 semester. As stated previously, the range limit for a

student to graduate is within six years of their starting term, so to be certain a student would not

graduate and be considered non-graduated, the cut off mark for non-graduates are those students

from the fall 2010 to summer 2011. The queries resulted in a total of 16,074 students with 12,677

graduating students and 3,397 non-graduating students, giving a class balance of 79% to 21%.

If we were to try to enlarge the search of non-graduates to look for students who had stopped
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enrolling in the next semester or took 3 years off, we cannot be certain this student did not take

classes at another university only to transfer back to UNLV to graduate or that they returned to

graduate after a break. With our strict range, we can be sure these students did not graduate at

UNLV within the time frame.

From UNLV Analytics, a table of student data meeting the given criteria was taken from

enrollment, admissions, and graduation relational databases. A query is automatically generated in

SQL based on the constraints. The enrollment and admissions tables each needed to be downloaded

for each semester and concatenated. Students meeting the criteria for non-graduates were retained

in admissions along with graduating students found by left outer join on graduation and admissions

using the NumPy and Pandas libraries in Python.

Four variables were generated, the starting term, second term, parents’ highest education level,

and ’startedSummer.’ The starting term was given as the admission term for when a student had

applied and enrolled in classes for the term. The second term was the spring or fall term following

the starting term. For students who began in the summer, they were assigned to the next fall term

and the startedSummer flag was set to one and zero if otherwise. The student table was then left

outer joined with the enrollment table, giving the term information for the first and second terms.

The financial aid tables carry granular information on the education level of each parent as reported

by the student. These categories were consolidated into simpler groups, e.g., the categories master’s

degree, some graduate school, doctorate (professional), doctorate (academic), and post-doctorate

became ’graduate school.’ The highest education level achieved by either parent was taken as the

attribute.

From MyUNLV, queries were generated to find the term GPA and cumulative GPA for each

semester along with financial aid data, loans, scholarships, and grants. In similar methods as stated

above, the GPA data for each term and financial aid information were left outer joined with the

student data. There were many missing values because of these left out joins using student records.

Students are not required to file for the Free Application for Federal Student Aid (FAFSA), so

records will be empty. Similarly, term records are missing if a student did not enroll in that term.

3.2 Class Imbalance

Class imbalance occurs when one or more classes dominate the data. This becomes a serious issue

for two main reasons, misleading evaluation metrics for models and an over-emphasis in models

learning the majority class while placing less value on the minority class. In this case, we see the
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student data has a class imbalance of 79% to 21% or roughly four to one. If we had a simple model

which predicted that every student would graduate, the accuracy of the model would be 79% and

seemingly good. Of course this metric would be misguiding and useless. See section 4.1 for how

this impacts the evaluation of models.

There are many complex techniques to combat class imbalance such as over-sampling of the

minority class, under-sampling of the majority class, and combinations of the two. There are

also class balancing weights which can be applied to the penalty of learning models where the

classes are weighted proportionally to their size so the model ideally does not favor either class.

Preliminary results with hyper-parameter searches in learning models showed that class balance

weights rarely outperformed not having weights at all. When considering under or over-sampling,

the small amount of data lends itself to over-sampling the minority class to equal the majority class

which causes the class balance weights to become equal to not having class balances at all.

3.2.1 Over-Sampling Techniques

Over-sampling techniques attempt to balance the classes by either generating or using samples from

the minority classes until they equal the size of the majority class. In this case, the training set

contains 8,834 positive (graduating) samples and 2,417 negative (non-graduated) samples. Over-

sampling is only used on the training set so that the test set still serves as an accurate measure of

how well the model will generalize to new, incoming students. These techniques are applied after

the data has been transformed, scaled, and imputed.

Random Over-Sampling

Random over-sampling is a simple technique that duplicates a sample with replacement at random

from the minority class until the size matches the majority class.

SMOTE

The Synthetic Minority Over-Sampling Technique first described by Chawla et al. [BCHK11]

creates new samples of the minority class by generating new attributes based on the surrounding

samples in feature (attribute) space. Each student is a point in the multidimensional attribute

space where each attribute forms a plane. To give a clear example of how a GPA attribute could

be generated, we select a random student from the non-graduate minority class and its k nearest

neighbors in this attribute space of the non-graduates. We find the difference between the selected
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student’s GPA and one of its k nearest neighbors, say 2.9 - 3.1 which gives a difference of 0.2. This

difference is then multiplied by a random value between zero and one, e.g., 0.5, which gives 0.1.

This value is then added to the selected student’s GPA which gives 2.9 + 0.1 = 3.0, an attribute

that lies between the two attributes in this case. The synthetic attribute is set to be the GPA of

the synthetic student sample. This process continues for all attributes and the synthetic student is

added to the minority class. The number of nearest neighbors, k, is dependent on the amount of

over-sampling needed. In our case, the minority class needs to be over-sampled at 365%.

ADASYN

Adaptive synthetic (ADASYN) over-sampling is a technique developed by He et al. [HBGL08] which

attempts to put more focus on hard-to-classify samples. However, by generating samples closer to

the more difficult students for classification, ADASYN is sensitive to outliers. The algorithm

generates minority samples similar to SMOTE, but it generates the number of samples according

to the ratio of the class distribution. In our case, ADASYN generates 6,743 synthetic students for

the non-graduated class for a total of 9,160 samples. This brings the class percentage to 50.9% for

non-graduated and 49.1% for graduated students.

3.3 Data Cleaning

Data cleaning refers to detecting and correcting student records which have inaccurate or corrupt

values resulting in ”dirty” data. Sometimes this is caused simply by values being incorrectly

manually entered by a worker, e.g., a GPA of 40.1 instead of 4.01. Such records must be verified

and corrected, or when the data cannot be verified, the record can be dropped from the analysis. A

different issue is when two sets of data have the same information but separate representations. An

example in this case are international exchange students who have a GPA model that is on the scale

of 0-100. In this case, the GPA is scaled to within the range of 0.0-4.0 to retain the information.

The data is largely clean due to its census level of reporting at the federal level. Many of

the attributes which needed cleaning were numerical in nature and the few dirty records could

be manually verified by comparing a student’s record in MyUNLV. Examples are an age of zero

or a GPA of 101 which can be easily spotted in the exploratory phase via visualizations such as

histogram plots. For handling missing values, see section 3.7.
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3.4 Rationale for Attribute Choices

As noted in [GE03], ”The objective of variable selection is three-fold: improving the prediction

performance of the predictors, providing faster and more cost-effective predictors, and providing a

better understanding of the underlying process that generated the data.” Certain features may play

no role in determining the outcome and only serve as disruptive noise for models. Most models’

computational complexity is directly tied to the number of attributes.

In addition to model complexity is the explanation and visualization of the datas’ most salient

attributes. Determining the most impactful attributes lead to actionable interventions in students.

There are three main algorithms for attribute selection, filters (univariate statistical tests), wrappers

(a search of the best feature combinations), and embedded (variable selection as a process of training

a model).

3.4.1 The Chi-Squared Data Test

A good test to determine if an attribute is independent of the outcome class is the chi-squared test.

The null hypothesis assumes that the attribute and outcome class are independent and calculates a

p-value. In the results, 61 of the attributes had a p-value less than 0.05 which is generally accepted

to be statistically significant, thus for those attributes the null hypothesis can be rejected. The

table is given in appendix B in table B.1.

3.4.2 Recursive Feature Elimination

Recursive feature elimination is a wrapper method which takes a model, in this case logistic re-

gression, and repeatedly trains the model on an increasing and varied subset of the attributes. By

analyzing the coefficients learned by the logistic regression model, the least weighted attributes

are pruned and replaced by new attributes until all attributes have been tried. Using a logistic

regression model with an L1 penalty, the following were ranked as the top 30 attributes as shown

in table B.3 of appendix B. The L1 penalty ensures that every attribute has a non-zero coefficient.

F1 score is used to optimize training (see subsection 4.1.4). The entire data set was used in this

case without over-sampling techniques.

We can also use recursive feature elimination with cross-validation (see section 4.2 for more on

cross-validation). Cross-validation allows us to see how training on these subsets of attributes may

generalize to new students.
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Figure 3.1: Recursive Feature Elimination with Cross Validation Using Logistic Regression - No
Over Sampling

With no over-sampling, 40 is the number of optimal features returned.

Figure 3.2: Recursive Feature Elimination with Cross Validation Using Logistic Regression - With
Random Over Sampling

16



www.manaraa.com

With random over-sampling, 72 is the number of optimal features returned. We see that the line

is much smoother with more samples and class balancing, but the F1 score is about 10 percentage

points less.

3.4.3 Decision Tree - Feature Importances

Decision trees split up the data by selecting an attribute and calculating a measure of information

gain. This implementation uses Gini importance to find the optimal split of the data [PVG+11].

By not giving a maximum depth and training on all data with all attributes, every attribute can

be ranked by a score. The table is given in appendix B in table B.2.

3.5 Attributes Used For Prediction

Using a combination of the previous techniques and tests of mutual information, the attributes

chosen are shown in table 3.1. Ideally, the features themselves would have a near zero Pearson

correlation coefficient with each other, meaning they have unique information. Where attributes

are highly correlated, greater than 85%, one is chosen and the other dropped, as is the case with the

Millennium scholarship attribute for the first and second term. It is most likely that students will

retain the scholarship into the second semester, so they are highly correlated. Attributes ending in

x denote the first term and y denotes the second term.

3.5.1 Feature Scaling and Transformation

Categorical variables need to be transformed into an interpretable fashion for machine learning

algorithms. One simple way is to create new columns corresponding to each possible category and

use one-hot encoding. Take the attribute ’Academic Load x’ which corresponds to the amount

of credits taken in the first semester with the categories ’Full-Time,’ ’Part-Time,’ and ’No Unit

Load,’ then the table would be transformed as in table 3.2. The variable to be transformed would

be removed from the data and the individual category variables would replace it, increasing the

number of attributes by the number of categories.

Similarly to categorical features, binary features are transformed to one for positive and zero

for negative. Numerical features are then scaled to a range of zero to one inclusive. At this time, no

techniques are used to change numerical outliers to avoid a loss of information. Thus, all attributes

are largely between zero and one for the machine learning algorithms.

17



www.manaraa.com

Attribute

Admission Type

Gender

Millennium Scholar y

Taking Remedial x

Taking Remedial y

Western Undergraduate Exchange x

Non-Resident Alien

Nevada Resident

Honors College y

Term GPA x

Term GPA y

Cumulative GPA y

Cumulative Transfer GPA

Age

Cumulative Transfer GPA Credits

Core High School GPA

Unweighted High School GPA

loans

grants

Prmry EFC

Students Total Income

Parent Highest Ed Level Bachelor Level

Academic Load x Full-Time

Academic Load x No Unit Load

Academic Load y Full-Time

Academic Load y No Unit Load

SAP Not Meet

SAP Probation

SAP Meets SAP

IPEDS Race-Ethnicity Asian

IPEDS Race-Ethnicity Black or African American

Table 3.1: Selected attributes used for classification.

Academic Load x Full Time Academic Load x Part Time Academic Load x No Unit Load

1 0 0

0 1 0

0 0 1

Table 3.2: Example of a transformed categorical variable.

3.6 Visualizations

Visualizations are useful for getting a quick sense of the information contained in the data and the

distribution. The trends between the two classes are often what would be expected. As shown in
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Figure 3.3: A histogram with kernel density es-
timation of first term GPA at UNLV.

Figure 3.4: A histogram with kernel density es-
timation of second term GPA at UNLV.

figures 3.3 and 3.4, that graduate class has a higher mean and more narrow distribution than the

non-graduate class. Interestingly, figures 3.5 and 3.6 show out-of-state students are more likely to

be in the graduate class.

The satisfactory academic progress (SAP) attribute is likely to have high information due to its

trying to measure academic progress directly. The requirements for this policy per semester are for

undergraduate students to maintain above a 2.0 GPA, satisfactorily complete at least 70% of their

attempted credits, and for students to complete their degrees within a credit limit of 186 credits.

Failure to meet SAP results in financial aid being withheld by the university. Students who fail to

Figure 3.5: A normalized bar plot of Nevada res-
idency.

Figure 3.6: A normalized bar plot of US citizen-
ship.
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meet SAP must take bureaucratic steps to be in good standing with the university and continue.

This likely contributes to struggling students not returning to take more classes. We can see the

distribution in figure 3.7.

Figure 3.7: A normalized bar plot of the student academic progress attribute.

The Pearson correlation coefficient is shown in a heatmap in figure 3.8 for all the selected

attributes. Ideally, a strong positive or negative correlation would indicate information related to

the outcome variable.

3.6.1 Principal Component Analysis

Principal component analysis (PCA) is a technique to reduce the number of attributes without a

significant loss in the variance of the attributes. PCA is in the class of dimensionality reduction

techniques which finds a transformation of the data into a lower dimensional space. This lower

dimension version of the data can be useful to train models more efficiently where a large number

of attributes can slow the training or increase noise or bias. However, an important contribution

is visualizing high dimensional data which is still an active area of research. By transforming the

data into two or three-dimensional space, it can be visualized in traditional plots. This can help to

detect clusters, outliers, and the general distribution of the data. This technique is applied after

the data has been transformed, scaled, and imputed.

We can see from the three-dimensional and two-dimensional plots of figures 3.9 and 3.10 that
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Figure 3.8: Correlation plot of selected features.

the majority class dominates the space. It is apparent that there are two major clusters in this

space where all attributes of the data are used with PCA. Analyzing plots with just the selected

attributes as in figures 3.11 and 3.12 shows there are many subgroups within the data and significant

overlaps between the two classes. The two classes are visualized separately in figures 3.13 and 3.14

3.7 Imputation Method

Due to the left outer joins on the data, there are many missing values. Many machine learning

models do not expect missing values in the data and will not properly predict for a sample. To run

the models, some value must be given.
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Figure 3.9: A transformation of the data to 3-
dimensional space using PCA.

Figure 3.10: A transformation of the data to 2-
dimensional space using PCA.

Figure 3.11: A transformation of the data to 3-
dimensional space using PCA for the selected at-
tributes.

Figure 3.12: A transformation of the data to 2-
dimensional space using PCA for the selected at-
tributes.

Figure 3.13: Selected attributes visualized in 3-
dimensional space only for graduate students.

Figure 3.14: Selected attributes visualized in
3-dimensional space only for non-graduate stu-
dents.
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There are three well known types of missing data, missing completely at random (MCAR),

missing at random (MAR), and missing not at random (MNAR). The most important type for this

analysis is missing not at random where the data is missing due to a reason of that variable itself.

A student who had a low ACT or SAT score may neglect to submit their scores, since it is not

required for UNLV. Similarly, transfer students are not required to submit high school transcripts or

test scores if they have sufficient transfer credits from another college. There are also many reasons

why students do not complete FAFSA which contributes to many of the categorical variables in

the data. It could be that students from wealthy families may not believe they will get any funding

from FAFSA and choose not to complete it. This introduces a major bias into the samples and

analysis since the data would be skewed to represent the middle class. International and non-

resident students may not complete FAFSA because they do not believe they will be eligible for

federal funds. Students may also be entirely ignorant of what FAFSA is.

From a databases perspective, it makes sense why some values are missing. Take the student

athletes table. It is needless to keep a table with every student when you can simply insert athletes

into the table as needed. In these and similar cases such as honors students or specific scholarships

a value of ’no’ or zero is placed for all missing rows. For all other cases, a simple mean imputation

for numerical values or the most frequent category in categorical columns was used as a filling

value. As an alternate mean imputation, students were split by admission type (freshmen versus

transfer) and missing values were filled with the corresponding mean. In a comparison of the feature

ranking methods, the results were nearly identical. The mean imputation regardless of admission

type was used so as to not introduce researcher bias on how students should be grouped. More

advanced imputation methods are left for future work which can be compared to the results of

mean imputation.
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Chapter 4

Experimental Results

4.1 Evaluation Metrics

Evaluation metrics are the measures by which we can rate and understand the performance of a

machine learning model. A quick way of visualizing the performance of a model is by a confusion

matrix. For our purposes, the ”positive” class is considered the students who have graduated, and

the ”negative” class are the non-graduated students.

Figure 4.1: General Confusion Matrix

The evaluation metrics discussed are quick interpretations of specific aspects shown by the

confusion matrix, but all are based on TP , FP , FN , and TN .

4.1.1 Accuracy

Accuracy is the most intuitive evaluation metric; it is simply the percentage of correctly classified

samples. However, in an imbalanced case in particular, it is a misleading metric. For this data

set, simply predicting graduated for all student samples should give an accuracy of 79%, which is

far above random guessing. This model would actually be useless for the problem despite having

a good score. With imbalanced data sets, models can quickly develop a bias towards the majority

class while ignoring type 1 and type 2 errors. Accuracy is not used to evaluate the models for these
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reasons.

4.1.2 Recall

Recall, also known as specificity and true positive rate, is the proportion of correctly predicted

graduated students over the number of graduated students.

TP

TP + FN
(4.1)

An informal understanding of recall in this case would be how many of the students who are going

to graduate that the model actually predicts correctly.

4.1.3 Precision

Precision is the proportion of correctly predicted graduated students over the number of students

classified as graduated.
TP

TP + FP
(4.2)

An informal understanding of precision in this case would be how certain we can be when a model

predicts a student will graduate that they will actually graduate.

4.1.4 F1 Score

It is often the case that recall and precision are equally important metrics. To quickly evaluate

models by both measures, F1 score represents an equal contribution of the metrics by a harmonic

mean given as:
2 ∗ precision ∗ recall
precision + recall

(4.3)

This gives a score between zero and one where one would represent perfect recall and precision.

Recall and precision give scores which are both valuable and, being a proportion of classification, is

largely independent of the class distribution. Due to F1 score’s resistance to class imbalance and its

equal weighting of recall and precision, it is the main score by which the models will be evaluated.

4.1.5 Area Under Curve

Area under curve (AUC) relates to receiver operating characteristics (ROC) analysis. ROC graphs

provide a similar intuitive measure as do confusion matrices. It is a graph of the true positive rate

versus the false positive rate. ROC analysis has a long history in medical diagnosis which then
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found great utility in the classification work of machine learning as described in the seminal work

of Tom Fawcett [Faw06].

Figure 4.2: ROC Graph Example with AUC

The red dotted line of x = y represents 50% of the area which corresponds to randomly guessing

graduated or non-graduated. Ideally, the blue curve which represents the model would be up and

to the left having 100% of the AUC.

4.2 10-Fold Cross-Validation

K-fold cross-validation, or in our case 10-fold cross-validation, is a technique to split the data into

K subsets of the data. The motivation for this technique is to have the maximum student size

possible to test (with cross-validation sets) and train with. Using ten split subsets, the model

trains on nine and the held out subset, the tenth, is used to test. This process is continued by

holding out the ninth subset and training a new model with the same parameters on the subsets

one through eight and the tenth, et cetera. The results are found by taking the average of all ten

models’ performances on training and cross-validation sets, including the standard deviations. This

gives a more detailed picture of how the model is learning over time which can be analyzed in a

learning curve graph.

The particular implementation used here is scikit learn’s stratified K-fold function. The data

was shuffled. The random state of the function was set to an integer so all models would have
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the same splits for reproducibility between experiments. The splits of data are randomly selected

from the samples and the balance of graduated to non-graduated classes are maintained for the

training set. This means if over-sampling is applied, each split will have 50% of both graduated

and non-graduated samples. If there is no over-sampling, the splits represent the training set, most

likely four to one graduates to non-graduates.

4.2.1 Training, Testing, and Cross-Validation Splits

For the held out testing data to compare models, 30% of the students were randomly separated

and scaled according to the training set. The 70% of remaining students were then used for 10-fold

cross-validation.

4.3 Hyperparameter Search

A parameter for a model is something that is adjusted or tuned while the model is learning, like

a coefficient for an attribute in logistic regression. A hyperparameter is what is set for a model

prior to training, like setting the max depth of a decision tree. Hyperparameters play a key role in

how long a model will need for training and contributes significantly into how effectively the model

learns. It is rarely obvious what a good set of hyperparameters would be for a given problem and

model. Instead, these hyperparameters are found experimentally. Multiple models are trained with

varying combinations of hyperparameters.

Here is where the cross-validation set becomes particularly useful. While the parameters are

tuned according to the training, the hyperparameters become biased towards testing well on the

cross-validation set. This creates a type of ”fit” for the hyperparameters on the cross-validation

set, since the hyperparameters that are selected are the set which performs well. This is why a test

set of students are held out that the models have never seen before which are used to evaluate and

compare the models, giving a more realistic assessment of performance on new cohorts of students.

This hyperparameter search is different for each model since they all have different hyperparameters.

The search is implemented via scikit learn’s grid search function with cross-validation.

4.4 Logistic Regression

In many analyses, logistic regression serves as a baseline comparison for machine learning models.

This is particularly true when there is no shared data set for a given problem that all researchers
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have access to. For student data which is protected by federal privacy laws, there are no reliable

public data sets available. Logistic regression is thus the first model to choose as in [Her06].

4.4.1 Hyperparameters

The two main hyperparameters to search over for logistic regression are C and the type of solver.

The solver is typically less important and is the optimization method used by the model to learn

the parameters. The three solvers used here are liblinear, LBFGS, and newton-cg [PVG+11]. More

importantly is the regularization term, C. This term helps to reign in overfitting. In the case of

logistic regression, it learns a coefficient, a multiplier, for each attribute according to its influence

on the outcome. If the student training set happens to have a split of the data where particular

attributes, like whether they are full time in their second term, very strongly correlate with the

outcome, but this is not true of the general student population, then the model can learn a very

large coefficient for that attribute. However, the performance will then be poor in general because

this attribute is incorrectly emphasized. C is the inverse of the regularization strength, so a large

C corresponds to low penalization for strong coefficient changes in learning while a low C gives a

higher penalization.

A Quick Note On Logspace

The values of C searched over are taken from NumPy’s logarithmic space function,

’C’: np.logspace(-4, 4, 8). This means from the range of [10−4, 104], eight points are chosen,

giving .0001, .00138949549, .0193069773, .268269580, 3.72759372, 51.7947468, 719.685673, 1000.

4.4.2 Results

No Over-sampling

The best parameters are C = 51.7947 with the newton-cg solver.

F1 score of Logistic Regression - No Over-Sampling classifier on test set: 0.9044
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Class precision recall f1-score support

0 0.70 0.41 0.52 1009

1 0.86 0.95 0.90 3814

avg/total 0.83 0.84 0.82 4823

Table 4.1: Evaluation metrics for logistic regression -
no over-sampling.

Figure 4.3: Logistic regression - no over-
sampling

Figure 4.4: Logistic regression - no over-
sampling

Figure 4.5: Logistic regression - no over-
sampling
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Class precision recall f1-score support

0 0.46 0.70 0.56 1009

1 0.91 0.78 0.84 3814

avg/total 0.82 0.77 0.78 4823

Table 4.2: Evaluation metrics for logistic regression -
random over-sampling.

Figure 4.6: Logistic regression - random over-
sampling

Figure 4.7: Logistic regression - random over-
sampling

Figure 4.8: Logistic regression - random over-
sampling

Random Over-sampling

The best parameters are C = 3.7276 with the newton-cg solver.

F1 score of Logistic Regression - Random Over-Sampling classifier on test set: 0.8426
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Class precision recall f1-score support

0 0.46 0.70 0.56 1009

1 0.91 0.78 0.84 3814

avg/total 0.81 0.77 0.78 4823

Table 4.3: Evaluation metrics for logistic regression -
SMOTE over-sampling.

Figure 4.9: Logistic regression - SMOTE over-
sampling

Figure 4.10: Logistic regression - SMOTE over-
sampling

Figure 4.11: Logistic regression - SMOTE over-
sampling

SMOTE Over-sampling

The best parameters are C = 3.7276 with a LBFGS solver.

F1 score of Logistic Regression - SMOTE classifier on test set: 0.8418
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Class precision recall f1-score support

0 0.47 0.56 0.51 1009

1 0.88 0.83 0.86 3814

avg/total 0.79 0.78 0.78 4823

Table 4.4: Evaluation metrics for logistic regression -
ADASYN over-sampling.

Figure 4.12: Logistic regression - ADASYN over-
sampling

Figure 4.13: Logistic regression - ADASYN over-
sampling

Figure 4.14: Logistic regression - ADASYN over-
sampling

ADASYN Over-sampling

The best parameters are C = 0.0001 with the liblinear solver.

F1 score of Logistic Regression - ADASYN classifier on test set: 0.8544

Analysis of Results

The initial results of logistic regression look very promising with an F1 score of 90.45% even

without over-sampling. However, the C value is very high, and the learning curve as shown in

figure 4.4 further confirms that this model is overfitting the training. It is most likely learning the

class distribution and class imbalance more than the usefulness of the attributes. This is further
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confirmed with the random over-sampling results showing an immediate drop of 15 percentage

points on training and cross-validation. The ADASYN learning curves perform the worst with the

F1 scores being below the viewing threshold of 70%. These learning curves show over-fitting even

with smaller regularization terms. Having more student data with the same methods are unlikely

to improve the models, it can only be alleviated with new attributes not included here.

4.5 Decision Tree

Decision trees have found great success in predicting and interpreting student retention and grad-

uation rates as reported in section 2.1.2. They are particularly robust at handling categorical

variables which form roughly two-thirds of the data. The implementation used here is scikit learn’s

version of an optimized CART algorithm. Rather than using a rule set to classify as some decision

trees do, each node splits up the data according to a measure of information gain from the split.

4.5.1 Hyperparameters

The three main hyperparameters search over are the criterion, splitting type (splitter), and the

max depth of the tree. The criterion is the measure of information gain of which there are two

types, Gini and entropy. If the split type is best, then the optimal Gini or entropy feature is used.

The random split chooses a random feature at each node and calculates the information gain. The

depth of the tree can fight over-fitting, since the tree is less likely to form a split for every attribute

of the training set. Instead the tree uses the most salient attributes. For max depth, the search is

over five, ten, and fifteen levels deep.

4.5.2 Results

No Over-sampling

The best parameters are entropy, a ’best’ splitter, and a max depth of five.

F1 score of Decision Tree - No Over-Sampling classifier on test set: 0.9177

33



www.manaraa.com

Class precision recall f1-score support

0 0.78 0.48 0.60 1009

1 0.88 0.96 0.92 3814

avg/total 0.86 0.86 0.85 4823

Table 4.5: Evaluation metrics for decision tree - no
over-sampling. Figure 4.15: Decision tree - no over-sampling

Figure 4.16: Decision tree - no over-sampling Figure 4.17: Decision tree - no over-sampling
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Class precision recall f1-score support

0 0.50 0.60 0.55 1009

1 0.89 0.84 0.86 3814

avg/total 0.81 0.79 0.80 4823

Table 4.6: Evaluation metrics for decision tree - ran-
dom over-sampling. Figure 4.18: Decision tree - no over-sampling

Figure 4.19: Decision tree - no over-sampling Figure 4.20: Decision tree - no over-sampling

Random Over-sampling

The best parameters are Gini, a splitter of best, and a max depth of 15.

F1 score of Decision Tree - Random Over-Sampling classifier on test set: 0.8719
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Class precision recall f1-score support

0 0.49 0.63 0.55 1009

1 0.89 0.83 0.86 3814

avg/total 0.81 0.79 0.79 4823

Table 4.7: Evaluation metrics for decision tree -
SMOTE over-sampling.

Figure 4.21: Decision tree - SMOTE over-
sampling

Figure 4.22: Decision tree - SMOTE over-
sampling

Figure 4.23: Decision tree - SMOTE over-
sampling

SMOTE Over-sampling

The best parameters are Gini, a splitter of best, and a max depth of 15.

F1 score of Decision Tree - SMOTE classifier on test set: 0.8472
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Class precision recall f1-score support

0 0.60 0.49 0.54 1009

1 0.87 0.92 0.89 3814

avg/total 0.82 0.83 0.82 4823

Table 4.8: Evaluation metrics for decision tree -
ADASYN over-sampling.

Figure 4.24: Decision tree - ADASYN over-
sampling

Figure 4.25: Decision tree - ADASYN over-
sampling

Figure 4.26: Decision tree - ADASYN over-
sampling

ADASYN Over-sampling

The best parameters are Gini, a splitter of best, and a max depth of 10.

F1 score of Decision Tree - ADASYN classifier on test set: 0.8864

Analysis of Results

Decision trees tend to be sensitive to class imbalances due to their splitting criterions, since the

algorithm tries to split the data optimally. This leads to the majority class generally giving the

most information gain. We see that the decision tree performs very well with no sampling, achieving

a slightly better result than logistic regression. However, like logistic regression it quickly overfit
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the data and left little room for growth in new student samples.

The algorithm’s performance on the over-sampling student sets suggests a robustness and

healthy growth in the presence of additional student data, so collecting more student samples

should increase the predictive power of the model as evidenced by the learning curves. The algo-

rithm has impressively high recall on the graduated student class at 96% with no over-sampling.

4.6 Support Vector Machines

While logistic regression tries to linearly separate the two classes, SVMs take a different approach by

constructing a hyperplane and maximizing the marginal distance. SVMs have kernels, an essential

feature of the algorithm that can be either linear or nonlinear. Not all data is linearly separable,

so logistic regression can hit a limit where a nonlinear SVM can find a classification boundary

with great complexity. This makes SVMs robust with high dimensional data and need less data as

compared to other complex models. In this implementation, the radial basis function (RBF) kernel

is used to accomplish nonlinearity.

4.6.1 Hyperparameters

The main hyperparameters searched for are the C and gamma terms. The C term functions

similarly to regularization in logistic regression. A high C allows the SVM to select more student

samples for support vectors, increasing its ability to classify all samples and overfit, while the

gamma parameter controls the influence of each student sample [PVG+11]. Five points each are

selected from the logarithmic space of [10−2, 104] for C and [10−2, 103] for gamma.

4.6.2 Results

No Over-sampling

The best parameters are C = 316.2278 and gamma = 0.1778.

F1 score of SVM - No Over-Sampling classifier on test set: 0.9090
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Class precision recall f1-score support

0 0.78 0.35 0.48 1009

1 0.85 0.97 0.91 3814

avg/total 0.84 0.84 0.82 4823

Table 4.9: Evaluation metrics for SVM - no over-
sampling. Figure 4.27: SVM - no over-sampling

Figure 4.28: SVM - no over-sampling Figure 4.29: SVM - no over-sampling
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Class precision recall f1-score support

0 0.43 0.01 0.02 1009

1 0.79 1.00 0.88 3814

avg/total 0.72 0.79 0.70 4823

Table 4.10: Evaluation metrics for SVM - random
over-sampling. Figure 4.30: SVM - random over-sampling

Figure 4.31: SVM - random over-sampling Figure 4.32: SVM - random over-sampling

Random Over-sampling

The best parameters are C = 10 and gamma = 1000.

F1 score of SVM - Random Over-Sampling classifier on test set: 0.8826
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Class precision recall f1-score support

0 0.44 0.32 0.37 1009

1 0.83 0.89 0.86 3814

avg/total 0.75 0.77 0.76 4823

Table 4.11: Evaluation metrics for SVM - SMOTE
over-sampling. Figure 4.33: SVM - SMOTE over-sampling

Figure 4.34: SVM - SMOTE over-sampling Figure 4.35: SVM - SMOTE over-sampling

SMOTE Over-sampling

The best parameters are C = 10 and gamma = 56.2341.

F1 score of SVM - SMOTE classifier on test set: 0.8589
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Class precision recall f1-score support

0 0.68 0.45 0.55 1009

1 0.87 0.94 0.90 3814

avg/total 0.83 0.84 0.83 4823

Table 4.12: Evaluation metrics for SVM - ADASYN
over-sampling. Figure 4.36: SVM - ADASYN over-sampling

Figure 4.37: SVM - ADASYN over-sampling Figure 4.38: SVM - ADASYN over-sampling

ADASYN Over-sampling

The best parameters are C = 10000 and gamma = 0.1778.

F1 score of SVM - ADASYN classifier on test set: 0.9051

Analysis of Results

The two major hyperparameters can be graphed against each other as shown in figures 4.39 and

4.40 with a heatmap of the F1 score on the validation set. These graphs were created with five-fold

cross-validation due to computational time. We see from the performance of these models that

they prefer to create highly complex classification boundaries, thus overfitting the data. For no

over-sampling, the SVM performs very similarly to logistic regression. In random over-sampling,

the model predicts the majority class nearly always. The model is likely confused due to the over-

sampling of the minority class with replacement. While there are more points for support vectors,
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Figure 4.39: C versus gamma with respect to
cross-validation scores.

Figure 4.40: Extended ranges of the parameter
search.

those additional points occupy the exact same space as the existing student samples, thus adding

no new information. Interestingly, the synthetic samples in SMOTE and particularly ADASYN

increase the generalization of the model. ADASYN over-sampling gives the best performance overall

with a very high C of 10000. The over-sampling techniques show that an SVM would benefit from

additional, diverse student samples to the data set.

4.7 Artificial Neural Network

Artificial neural networks (ANNs) are a fascinating class of algorithms which can approximate

complex functions. This makes ANNs a useful choice when a proper function is unknown and too

difficult to derive by analytical means. This implementation is specifically a multilayer perceptron

with one hidden layer using a tanh activation function and the LBFGS solver [PVG+11].

4.7.1 Hyperparameters

Two of the main hyperparameters which have the strongest affects on the model are the number of

nodes in the hidden layer and the value of alpha, otherwise known as the learning rate. The number

of hidden nodes corresponds to the complexity the model can learn. A high number of nodes can

learn more complex classifications at the risk of overfitting. A smaller number of nodes can fight

overfitting by only being able to hold information which is essential. The learning rate alpha sets

the rate at which the model adjusts its parameters with each pass over the data or samples. Lower

alpha rates slow training but grant finer grained learning. For these experiments, ten, thirty, fifty,

43



www.manaraa.com

Class precision recall f1-score support

0 0.73 0.43 0.54 1009

1 0.86 0.96 0.91 3814

avg/total 0.84 0.85 0.83 4823

Table 4.13: Evaluation metrics for MLP - no over-
sampling. Figure 4.41: MLP - no over-sampling

Figure 4.42: MLP - no over-sampling Figure 4.43: MLP - no over-sampling

and one hundred hidden nodes are considered with alpha values of either 0.1 or 0.01.

4.7.2 Results

No Over-sampling

The best parameters are an alpha of 0.01 and one hundred hidden nodes.

F1 score of MLP - No over-sampling classifier on test set: 0.9095
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Class precision recall f1-score support

0 0.46 0.72 0.56 1009

1 0.91 0.78 0.84 3814

avg/total 0.82 0.76 0.78 4823

Table 4.14: Evaluation metrics for MLP - random
over-sampling. Figure 4.44: MLP - random over-sampling

Figure 4.45: MLP - random over-sampling Figure 4.46: MLP - random over-sampling

Random Over-sampling

The best parameters are an alpha of 0.1 with thirty hidden nodes.

F1 score of MLP - Random over-sampling classifier on test set: 0.8348
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Class precision recall f1-score support

0 0.46 0.70 0.55 1009

1 0.91 0.78 0.84 3814

avg/total 0.81 0.76 0.78 4823

Table 4.15: Evaluation metrics for MLP - SMOTE
over-sampling. Figure 4.47: MLP - SMOTE over-sampling

Figure 4.48: MLP - SMOTE over-sampling Figure 4.49: MLP - SMOTE over-sampling

SMOTE Over-sampling

The best parameters are alpha = 0.01 and thirty hidden nodes.

F1 score of MLP - SMOTE over-sampling classifier on test set: 0.8439
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Class precision recall f1-score support

0 0.63 0.50 0.56 1009

1 0.87 0.92 0.90 3814

avg/total 0.82 0.83 0.83 4823

Table 4.16: Evaluation metrics for MLP - ADASYN
over-sampling. Figure 4.50: MLP - ADASYN over-sampling

Figure 4.51: MLP - ADASYN over-sampling Figure 4.52: MLP - ADASYN over-sampling

ADASYN Over-sampling

The best parameters are alpha = 0.01 and one hundred hidden nodes.

F1 score of MLP - ADASYN over-sampling classifier on test set: 0.8961

Analysis of Results

We see that in nearly all cases, the multilayer perceptron classifier is robust in performance, coming

very close to the evaluation metrics of the decision tree on the original data set with no over-

sampling. It achieved this by having a smaller number hidden nodes at just ten. There is a sharp

decline in score with random over-sampling as the model tends to over-classify the non-graduate

students. SMOTE over-sampling gave a nearly identical performance as random over-sampling

although with an alpha of 0.01 instead of 0.1. Interestingly, ADASYN over-sampling gave impressive
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performance overall with a hidden layer of fifty nodes and alpha of 0.01 the model was able to learn

a complex and more accurate classification function.
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Chapter 5

Conclusion

In this thesis, we described the problem of predicting student graduation rates. A review of the

literature shows the difficulty in establishing standardized methods as universities have different

demographics of students and there are no publicly available data sets for shared comparison of

models. We detailed the process of collecting applicable UNLV student data for the purpose of

analysis and prediction and pruning unnecessary and noisy attributes. Over-sampling techniques

address the class imbalance problem of the data set. Finally, we applied a wide array of techniques

currently used in the literature for this previously unanalyzed data set.

5.1 Summary of Results

We see as evidenced by the performance of all the models that class imbalance is highly influential.

Worse yet is how biased many of the classifiers become with logistic regression being a clear example

as shown in figure 4.4. Without over-sampling, all the models show a high bias in their learning

curves which implies that simply gathering more student data with the current methods are unlikely

Class precision recall f1-score

avg/0 0.5225 0.5925 0.5350

std/0 0.1184 0.1352 0.0238

avg/1 0.8900 0.8400 0.8575

std/1 0.0245 0.0757 0.0287

avg/avg 0.8125 0.7900 0.7900

std/avg 0.0171 0.0337 0.0200

Table 5.1: Logistic Regression - The average
and standard deviation of scores across all
experiments.

Class precision recall f1-score

avg/0 0.5825 0.5575 0.5600

std/0 0.1391 0.0660 0.0294

avg/1 0.8850 0.8825 0.8825

std/1 0.0058 0.0634 0.0299

avg/avg 0.8200 0.8125 0.8150

std/avg 0.0271 0.0377 0.0289

Table 5.2: Decision Tree - The average and
standard deviation of scores across all ex-
periments.
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Class precision recall f1-score

avg/0 0.5775 0.2875 0.3600

std/0 0.1791 0.1936 0.2410

avg/1 0.8375 0.9525 0.8900

std/1 0.0359 0.0465 0.0245

avg/avg 0.7825 0.8125 0.7775

std/avg 0.0629 0.0386 0.0640

Table 5.3: Support Vector Machine - The
average and standard deviation of scores
across all experiments.

Class precision recall f1-score

avg/0 0.5700 0.5850 0.5500

std/0 0.1364 0.1466 0.0082

avg/1 0.8875 0.8600 0.8700

std/1 0.0263 0.0942 0.0408

avg/avg 0.8225 0.8025 0.8025

std/avg 0.0126 0.0443 0.0263

Table 5.4: Multilayer Perceptron - The aver-
age and standard deviation of scores across
all experiments.

Rank precision recall f1-score

1 Multilayer Perceptron Decision Tree/SVM Decision Tree

2 Decision Tree Decision Tree/SVM Multilayer Perceptron

3 Logistic Regression Multilayer Perceptron Logistic Regression

4 SVM Logistic Regression SVM

Table 5.5: Ranking of models based on score.

to improve performance. One way to fight this high bias is to search for different student attributes

than what is gathered here.

The more complex models of support vector machines and multilayer perceptrons still suffer

from similar issues to logistic regression. The multilayer perceptron has a higher performance than

logistic regression yet shows the same trend in the learning curves past 6,000 examples. The support

vector machine models show promising results especially for more diverse data sets as evidenced

from its reaction to synthetic student examples.

While nearly all models achieved high F1 scores with some method, the decision tree achieved

the highest score at 0.9177 on the original student data set (table 4.5) as well as the highest, weighted

F1 score average at 0.815. This is far from the only reason why this model is chosen as the best.

The decision tree performed well across precision and recall. The support vector machine’s recall

for the minority suffers far worse than the decision tree but the majority score counter balances

this to a much higher score. However, we can see that the support vector machine significantly

fails at classifying the minority class. The decision tree consistently performed robustly across

over-sampling techniques. More importantly, the learning curves of the over-sampling experiments

show that the decision tree should be able to increase performance with more student samples.

Unlike the other models, this is true even without generating synthetic samples. The additional

benefit is the ability to visualize the model in a tree graph and interpret the meaning of the paths
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for a given student.

What is most difficult in this problem as we have seen from each of the confusion matrices

of the experiments is the stubbornly misclassified group of non-graduated students. The lowest

misclassification is seen in the multilayer perceptron’s performance with random over-sampling at

282 student samples while many of the models have around 550. With a total of 1,009 non-graduated

student samples in the test set, this is over 50% of those students consistently misclassified. This

misclassification could be due to key attributes missing from this data set or to human factors.

Many of these students likely fit the profile of graduating students but for some reason or other

decide to leave UNLV or dropout altogether. However, in the multidimensional space these students

would be difficult for any model to properly sift out without overfitting and decreasing performance

in general.

5.2 Implications for Higher Education Practictioners

This work provides a foundation on which further data can be collected and a direction for additional

modeling. The current models in conjunction with higher education staff can be an efficient and

effective method to assist in raising graduation rates at UNLV. By training a decision tree model

on all of the given data, future cohorts of students can be ranked according to the probability by

which they will or will not graduate. Those students who have the highest confidence ratings can

be addressed first.

Additionally, the feature ranking of this work suggests admissions officers should emphasize

core high school GPA and unweighted high school GPA as a more accurate measure of predictive

success at UNLV. For students who are not Nevada residents, eligibility for the Western Undergrad-

uate Exchange program which reduces tuition fees is an important factor for incoming applicants.

Furthermore, these results provide more empirical evidence for common practices by advising and

retention coordinators. Students taking remedial math or English courses in the first or second

semester are slightly less likely to graduate. Students who are less than full-time in either their

first or second semester are less likely to graduate. The SAP attribute remains as one of the most

predictive categorical variables.

The decision tree model provides the “path” which a student is on, allowing outreach efforts to

focus on those attributes most likely to redirect a student to a path of success. Certain attributes

are fixed, such as admission type, but the branching attributes provide a threshold for which

coordinators can work with students to set clear goals. For larger college departments, a decision
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tree model can be trained on their subset of students, giving more nuanced thresholds for the

specific major in addition to a university based model.

5.3 Future Work

With the current techniques employed and the analysis of the data set, there appears to be an upper

limit to classification and evaluation scores. While methods such as a hybrid approach or ensemble

modeling where different models are trained together and vote on each sample could be developed

to handle some of the bias/variance problems, the confusion matrices and evaluation metrics show

little variation in performance to improve information inference. Random forests could give a small

performance boost which use many decision trees to interpret a given sample.

However, domain experts may have additional attributes that can be gathered such as survey

data on motivation. Questions such as ”how likely are you to pursue graduate school” and ”how

determined are you to get a bachelor’s degree on a scale of one to five” could help to provide

essential information not yet tracked. The incorporation of the learning analytics field could prove

to give a more dynamic and real-time analysis of student performance and attention. Using learning

management systems, or in UNLV’s case, Blackboard and Moodle, metrics such as resources clicked,

time active online, engagement in online discussion, and others combined with theories of learning

could enhance the predictive power of student success, particularly on those students with little

stored data.

Not to be overlooked is the issue of missing data and imputation. With the addition of any

attributes based on survey data, we can apply this to newly incoming students but past students are

unlikely to provide this data accurately or at all. The imputation method used here is a standard

mean imputation, but it is likely that more advanced imputation techniques can provide entirely

different results like fuzzy K nearest neighbors imputation.

To get a more accurate picture of hard-to-classify samples, students can be tracked through the

National Student Clearinghouse to determine if they have dropped out of American universities

completely or have simply transferred to another university to complete their degree. Students

who complete a degree elsewhere likely had the ability to graduate from UNLV while students who

drop out entirely likely form two separate groups. As evidenced by the PCA visualizations, there

appear to be clusters of student groups which can be further explored.
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Appendix A

Data Dictionary

The meaning and context of the attributes gathered.

Attribute Description Values

First Time Student Binary (Y,N)

Admission Type First year (freshmen) versus transfer students. (FYR,TRN)

Gender (M,F)

IPEDS Race/Ethnicity IPEDS is the Integrated Postsecondary Ed-

ucation Data System. Their definition of

race/ethnicity is federally reported.

Categorical

Non-Resident Alien Binary (Y,N)

USA Citizen Binary (Y,N)

Age Discrete

Highest Education

Level - Father

Categorical

Highest Education

Level - Mother

Categorical

Parent Highest Ed

Level

Takes the highest education level of either par-

ent with consolidated categories

Categorical

Nevada Resident Binary (Y,N)

ACT Composite Score Discrete (0-36)

ACT Composite Score

Range

A score range in addition to the composite score

for comparison.

Ordinal, Range
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ACT English Score Discrete

ACT Math Score Discrete

SAT Combined Score Discrete (0-1600)

SAT Combined Score

Range

Ordinal, Range

SAT Critical Reading

Score

Discrete

SAT Math Score Discrete

Core High School GPA Discrete (0-4.8)

Unweighted High

School GPA

Discrete (0-4.0)

Weighted High School

GPA

Discrete (0-4.8)

Last High School -

Postal Code

Zipcode

Last High School - Un-

weighted Percentile

Percent (0-100)

Last High School -

Weighted Percentile

Percent (0-100)

Cumulative Transfer

GPA

Discrete (0-4.0)

Cumulative Transfer

GPA Credits

Discrete (0-4.0)

Date of Birth x Date

Campus Resident x Whether or not the student lived on campus (1st

term).

Binary (Y,N)

Academic Load x Academic load, full-time, part-time, etc. (1st

term).

Categorical

Student Athlete x (1st term) Binary (Y,N)
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Millennium Scholar x If the student received the Millennium scholar-

ship for this term (1st term).

Binary (Y,N)

Pell Recipient x If the student received any Pell grants for this

term (1st term).

Binary (Y,N)

Western Undergraduate

Exchange x

If the student received WUE for this term (1st

term).

Binary (Y,N)

Honors College x If the student was in the honors college (1st

term).

Binary (Y,N)

Taking Remedial x If the student was taking at least one remedial

class (1st term).

Binary

Campus Resident y Whether or not the student lived on campus

(2nd term).

Binary (Y,N)

Academic Load y Academic load, full-time, part-time, etc. (2nd

term).

Categorical

Student Athlete y (2nd term) Binary (Y,N)

Millennium Scholar y If the student received the Millennium scholar-

ship for this term (2nd term).

Binary (Y,N)

Pell Recipient y If the student received any Pell grants for this

term (2nd term).

Binary (Y,N)

Western Undergraduate

Exchange y

If the student received WUE for this term (2nd

term).

Binary (Y,N)

Honors College y If the student was in the honors college (2nd

term).

Binary (Y,N)

Taking Remedial y If the student was taking at least one remedial

class (2nd term).

Binary

Term GPA x (1st term) Discrete (0-4.0)

Cum GPA x Cumulative GPA at the end of the 1st term. Discrete (0-4.0)

Term GPA y (2nd term) Discrete (0-4.0)

Cum GPA y Cumulative GPA at the end of the 2nd term. Discrete (0-4.0)

PELL Elig Eligible to receive the pell grant for this aid year. Binary (Y,N)
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Prmry EFC Primary Estimated Family Contribution (EFC)

used for financial aid determination.

Continuous

Total Income Continuous

Student Income Contri-

bution

To fees after considering costs of living. Continuous

Students Total Income Continuous

Calculated SC Calculated student contribution to fees. Continuous

Calculated PC Calculated parent contribution to fees. Continuous

Calculated EFC Calculated Estimated Family Contribution

(EFC).

Continuous

Parent Contribution To fees. Continuous

In Family Number of family members. Discrete

In College Number of family members in college. Discrete

Married Categorical

Orphan If the student was an orphan or ward of the

state.

Categorical

AGI Adjusted Gross Income. Continuous

Care Dep Number of dependents the student cares for. Discrete

Dep Stat If the student is a dependent or independent. Categorical

SAP Satisfactory Academic Progress - if the student

meets the standards of staying on track for grad-

uation.

Categorical

loans Any loans recorded by the institution. Continuous

grants Any grants recorded by the institution. Continuous

schol Any scholarships recorded by the institution. Continuous

aidYear The financial aid-aid year. [2011-2017]

firstTerm The first spring or fall term the student attended

(excludes summer).

The range is

[2108-2175]

secondTerm The second spring or fall term the student at-

tended (excludes summer).

The range is

[2108-2175]
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startedSummer If the student’s admit term was a summer term. Binary

graduated Binary

class Whether the student graduated and in what

time span, 4 or 6 years

Categorical
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Appendix B

Attribute Importances

The attribute importances of the used techniques.

B.1 Chi Squared Test

Attribute Score P-value

Academic Load y No Unit Load 2322.24552094 0.0

SAP Not Meet 1400.98842422 1.2812752103e-306

SAP Probation 797.833657045 1.59611387245e-175

Academic Load y Full-Time 356.604418464 1.54515368674e-79

Academic Load x No Unit Load 347.022910073 1.88560587287e-77

Taking Remedial x 267.542983292 3.89416408306e-60

SAP Meets SAP 249.921951317 2.7005673127e-56

Admission Type 225.31033319 6.28240154001e-51

Millennium Scholar y 176.203937667 3.26815503007e-40

Taking Remedial y 163.82814175 1.64932107205e-37

Term GPA x 144.773718735 2.40675517221e-33

Western Undergraduate Exchange x 136.551581493 1.51136134481e-31

Western Undergraduate Exchange y 133.575639951 6.76553542713e-31

Term GPA y 128.035482183 1.10254168456e-29

IPEDS Race-Ethnicity Asian 120.942139953 3.93441050378e-28
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IPEDS Race-Ethnicity Black or

African American

85.3441526044 2.50702269399e-20

Non-Resident Alien 74.142239666 7.26862635707e-18

IPEDS Race-Ethnicity Nonresident

Alien

74.142239666 7.26862635707e-18

Cum GPA y 70.8953775776 3.76679465248e-17

Academic Load x Full-Time 62.5875836228 2.54855134244e-15

Nevada Resident 53.8582567671 2.15487617185e-13

Honors College y 49.6302431647 1.85630021142e-12

Parent Highest Ed Level Not Indi-

cated

48.6560551648 3.05025092709e-12

Cumulative Transfer GPA 44.8605123269 2.11581913178e-11

Honors College x 39.8075847839 2.80254649167e-10

USA Citizen 39.0791953294 4.06957636613e-10

Academic Load y Half-Time 38.3572256009 5.89095647621e-10

Academic Load x Part-Time 38.0232916976 6.99051102305e-10

SAT Combined Score Range 700-

799

36.8760674846 1.25881709899e-09

Academic Load y Part-Time 36.4004519337 1.60665960651e-09

Gender 32.352204753 1.28611202781e-08

Academic Load x Half-Time 31.9097664944 1.61503082295e-08

ACT Composite Score Range 12-17 31.5257113808 1.96816854512e-08

Campus Resident y 30.3769316476 3.55733519085e-08

SAT Combined Score Range 800-

899

20.9051108943 4.8260523269e-06

Last High School - Weighted Per-

centile

18.89192945 1.38336681412e-05

Parent Highest Ed Level Graduate

Level

18.4889071243 1.70896077587e-05
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IPEDS Race-Ethnicity Native

Hawaiian or Other Pacific Islander

17.7527982778 2.51547224591e-05

SAT Combined Score Range 900-

999

16.785016892 4.18625397316e-05

Pell Recipient x 15.6468111721 7.63411982817e-05

SAP Warning 15.3280870161 9.0362966847e-05

schol 14.5253801045 0.000138283933811

SAT Combined Score Range 1100-

1199

13.9119055132 0.00019158110756

IPEDS Race-Ethnicity American

Indian or Alaska Native

12.1516652986 0.00049044053864

Core High School GPA 10.3290403905 0.00130953273309

Student Athlete y 10.1867936004 0.00141450064697

IPEDS Race-Ethnicity White 9.31705768165 0.00227030272126

Parent Highest Ed Level HS Level 9.13947863079 0.00250152374163

IPEDS Race-Ethnicity Two or more

races

9.00912237456 0.00268635382634

Student Athlete x 8.86357188288 0.0029091775804

SAT Combined Score Range 600-

699

8.768842254 0.00306419886865

PELL Elig 8.15460511079 0.00429519516391

Academic Load x Three Quarter

Time

7.27453246049 0.00699390951424

ACT Composite Score Range 24-29 6.72977432689 0.00948165951282

Parent Highest Ed Level Some Col-

lege

6.66349081509 0.00984079572272

IPEDS Race-Ethnicity Unknown

race and ethnicity

6.60408672543 0.0101744975064

Dep Stat IND 5.97041031605 0.0145478953395
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SAT Combined Score Range 1200-

1299

5.69282299745 0.0170344302359

ACT Composite Score Range 30-36 5.5459305859 0.0185237049235

SAT Combined Score Range 1400-

1499

4.55127180003 0.0328943045165

In Family 4.18583561071 0.0407631128494

Pell Recipient y 3.77579622183 0.0519991468939

Cumulative Transfer GPA Credits 3.60583455684 0.0575771631932

Unweighted High School GPA 3.30193532677 0.0691983099747

SAT Combined Score Range 1300-

1399

3.23489225009 0.0720850450949

IPEDS Race-Ethnicity Hispanic 2.78397172765 0.0952117880088

In College 2.71939400496 0.0991356462848

Campus Resident x 2.56333731192 0.109367490703

Weight HS GPA Diff 2.13506557498 0.143964305592

Last High School - Unweighted Per-

centile

2.08408525923 0.148841357843

SAT Combined Score Range 1000-

1099

1.57449400707 0.20955557337

Prmry EFC 1.47710434947 0.224228123823

startedSummer 1.09214116563 0.295997282306

SAT Combined Score 1.07765937157 0.299221761217

ACT Math Score 1.06935728474 0.301090665076

SAT Math Score 0.988108610718 0.320205086325

loans 0.960359338545 0.32709635931

Dep Stat DEP 0.922655788035 0.336778613945

SAT Critical Reading Score 0.800747796198 0.370869884771

Academic Load y Three Quarter

Time

0.782375794589 0.376415520828

SAP unknown 0.780949167049 0.376851007896
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grants 0.779401340276 0.377324293749

Parent Contribution 0.768757056424 0.380601841711

Parent Highest Ed Level Less Than

HS Level

0.745130820782 0.388022234119

ACT Composite Score 0.601637165996 0.437954053999

Student Income Contribution 0.596950193696 0.439744036956

Married unknown 0.590626503569 0.442176955891

Dep Stat unknown 0.590626503569 0.442176955891

Total Income 0.482148600161 0.487450697591

ACT English Score 0.478202089918 0.489237826586

SAT Combined Score Range 1500-

1600

0.370567403138 0.542695147175

Married Yes 0.368182267094 0.543996759265

Millennium Scholar x 0.205755119208 0.650115040133

Married No 0.170741389213 0.679453750481

Calculated SC 0.121373773215 0.727549271715

Students Total Income 0.061849695915 0.803595950189

SAT Combined Score Range 500-

599

0.0324061535241 0.857139149679

Age 0.00185330208634 0.965661680365

Parent Highest Ed Level Bachelor

Level

0.00184248153897 0.96576200792

ACT Composite Score Range 18-23 2.74985115007e-06 0.998676894559

Table B.1: Score and p-value by the chi squared test.

B.2 Decision Tree Feature Importances

Attribute Importance

Admission Type 0.0256872321898

Gender 0.0146572939734
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Non-Resident Alien 0.00169027668642

USA Citizen 0.0098159158602

Nevada Resident 0.0108186507132

startedSummer 0.00339090870063

Campus Resident x 0.00505359752128

Student Athlete x 0.00204546679355

Millennium Scholar x 0.0074017071158

Pell Recipient x 0.00719171204443

Western Undergraduate Ex-

change x

0.00233113840596

Honors College x 0.000707535736932

Taking Remedial x 0.00965470285629

Campus Resident y 0.00478175221768

Student Athlete y 0.00219500030384

Millennium Scholar y 0.00955464655222

Pell Recipient y 0.00748218267976

Western Undergraduate Ex-

change y

0.00157272956668

Honors College y 0.000789915619138

Taking Remedial y 0.00837291709928

PELL Elig 0.00519146633973

Age 0.0265180521709

ACT Composite Score 0.00826495368349

ACT English Score 0.00891002643302

ACT Math Score 0.00874100972167

SAT Combined Score 0.00920299473248

SAT Critical Reading Score 0.00948506353776

SAT Math Score 0.00984548338182

Core High School GPA 0.0162573477348

Unweighted High School GPA 0.016355530548
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Weight HS GPA Diff 0.0135503234487

Last High School - Un-

weighted Percentile

0.0106667692976

Last High School - Weighted

Percentile

0.0116051855539

Cumulative Transfer GPA 0.0179309025197

Cumulative Transfer GPA

Credits

0.0175161912785

Term GPA x 0.0546319516342

Term GPA y 0.0654040006214

Cum GPA y 0.0592091490623

Prmry EFC 0.0114509236112

Total Income 0.0127352844276

Student Income Contribution 0.00504807785698

Students Total Income 0.0112281316919

Calculated SC 0.0108894730244

Parent Contribution 0.00888148224469

In Family 0.0099084468345

In College 0.00808328283602

loans 0.0160127487828

grants 0.0159680641545

schol 0.00804013144111

IPEDS Race-Ethnicity Amer-

ican Indian or Alaska Native

0.00115846739447

IPEDS Race-Ethnicity Asian 0.00789996317396

IPEDS Race-Ethnicity Black

or African American

0.00590474447088

IPEDS Race-Ethnicity His-

panic

0.00931259641922
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IPEDS Race-Ethnicity Native

Hawaiian or Other Pacific Is-

lander

0.00271905011269

IPEDS Race-Ethnicity Non-

resident Alien

0.00170674963836

IPEDS Race-Ethnicity Two

or more races

0.00597280846502

IPEDS Race-Ethnicity Un-

known race and ethnicity

0.00289558839742

IPEDS Race-Ethnicity White 0.0115157097937

Parent Highest Ed Level

Bachelor Level

0.0117331270376

Parent Highest Ed Level

Graduate Level

0.000290000483746

Parent Highest Ed Level HS

Level

0.0104979730832

Parent Highest Ed Level Less

Than HS Level

0.00369716932682

Parent Highest Ed Level Not

Indicated

0.00649652902633

Parent Highest Ed Level Some

College

0.0110260913134

ACT Composite Score Range

12-17

0.00181657853202

ACT Composite Score Range

18-23

0.00368150112902

ACT Composite Score Range

24-29

0.00263928796946

ACT Composite Score Range

30-36

0.000397145977431
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SAT Combined Score Range

1000-1099

0.0060868623827

SAT Combined Score Range

1100-1199

0.00279190913229

SAT Combined Score Range

1200-1299

0.00204128230973

SAT Combined Score Range

1300-1399

0.000622846113003

SAT Combined Score Range

1400-1499

8.26998452649e-05

SAT Combined Score Range

1500-1600

9.9896993928e-05

SAT Combined Score Range

500-599

8.37631063366e-05

SAT Combined Score Range

600-699

0.000389075947517

SAT Combined Score Range

700-799

0.00128625285404

SAT Combined Score Range

800-899

0.00282541311967

SAT Combined Score Range

900-999

0.00384593311345

Academic Load x Full-Time 0.00886771348429

Academic Load x Half-Time 0.00545814130541

Academic Load x No Unit

Load

0.00715284289733

Academic Load x Part-Time 0.00425694568151

Academic Load x Three Quar-

ter Time

0.00610707640688

Academic Load y Full-Time 0.0380959181101
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Academic Load y Half-Time 0.00562812266552

Academic Load y No Unit

Load

0.0760781049071

Academic Load y Part-Time 0.0033948623837

Academic Load y Three Quar-

ter Time

0.00845284246029

Married No 0.00453504345391

Married Yes 0.00222688557677

Married unknown 0.00290234784083

Dep Stat DEP 0.00488083895945

Dep Stat IND 0.00321584157013

Dep Stat unknown 0.00476018350288

SAP Meets SAP 0.0162269276036

SAP Not Meet 0.0286569999113

SAP Probation 0.0179083127718

SAP Warning 0.00354259658422

SAP unknown 0.00340670401822

Table B.2: Scores given by the decision tree.
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B.3 Recursive Feature Elimination

Attribute

Admission Type

Gender

Millennium Scholar y

Taking Remedial x

Taking Remedial y

Western Undergraduate Exchange x

Non-Resident Alien

Nevada Resident

Honors College y

Term GPA x

Term GPA y

Cum GPA y

Cumulative Transfer GPA

Age

Cumulative Transfer GPA Credits

Core High School GPA

Unweighted High School GPA

loans

grants

Prmry EFC

Students Total Income

Parent Highest Ed Level Bachelor Level

Academic Load x Full-Time

Academic Load x No Unit Load

Academic Load y Full-Time

Academic Load y No Unit Load

SAP Not Meet

SAP Probation

SAP Meets SAP

IPEDS Race-Ethnicity Asian

IPEDS Race-Ethnicity Black or African American

Table B.3: Chosen attributes of the RFE algorithm by logistic regression.
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